7 research outputs found

    Poster: TrueNets, a Topology Generator for Realistic Network Analysis

    Get PDF
    The availability of realistic topology generators is a key component in the study of network performance. This work describes a new approach for realistic generation of topologies, named TrueNets, that uses open data provided by public administrations and crowd-sensing efforts for populated areas, maps, altitude of land and buildings; TrueNets estimates link performance with classical propagation models and produces annotated topologies of networks that can actually exist in the selected areas, thus providing not only an abstract tool for performance evaluation, but also a design tool for planning. We use TrueNets to model distributed mesh networks and we show that the generated topologies differ substantially from state-of-the-art synthetic generators

    V-Edge: Virtual Edge Computing as an Enabler for Novel Microservices and Cooperative Computing

    Get PDF
    As we move from 5G to 6G, edge computing is one of the concepts that needs revisiting. Its core idea is still intriguing: Instead of sending all data and tasks from an end user's device to the cloud, possibly covering thousands of kilometers and introducing delays lower-bounded by propagation speed, edge servers deployed in close proximity to the user (e.g., at some base station) serve as proxy for the cloud. This is particularly interesting for upcoming machine-learning-based intelligent services, which require substantial computational and networking performance for continuous model training. However, this promising idea is hampered by the limited number of such edge servers. In this article, we discuss a way forward, namely the V-Edge concept. V-Edge helps bridge the gap between cloud, edge, and fog by virtualizing all available resources including the end users' devices and making these resources widely available. Thus, V-Edge acts as an enabler for novel microservices as well as cooperative computing solutions in next-generation networks. We introduce the general V-Edge architecture, and we characterize some of the key research challenges to overcome in order to enable wide-spread and intelligent edge services
    corecore